跳至内容
售后
用户工具
登录
站点工具
搜索
工具
显示页面
修订记录
反向链接
最近更改
媒体管理器
网站地图
登录
>
最近更改
媒体管理器
网站地图
您的足迹:
seroba
编辑本页后请点击“保存”。请参阅
syntax
了解维基语法。只有在您能
改进
该页面的前提下才编辑它。如果您想尝试一些东西,请先到
playground
热身。
媒体文件
====== 一、软件介绍 ====== SeroBA 是一种基于 k-mer 的 Pipeline,用于从 Illumina NGS 的reads中鉴定给定参考的血清型,以识别肺炎链球菌的包膜类型。 **整体分析流程** {{:liucheng.png?400|}} ====== 二、软件下载 ====== <code> # 依赖软件 Required dependencies: 1.Python3 version >= 3.3.2 2.KMC version >= 3.0 3.MUMmer version >= 3.1 4.Ariba # 安装diamond Set up bioconda channel: conda config --add channels bioconda Install SeroBA: conda install -c bioconda seroba </code> ====== 三、软件使用 ====== <code> usage: seroba createDBs <database dir> <kmer size> Creates a Database for kmc and ariba positional arguments: database dir output directory for kmc and ariba Database kmer size kmer_size you want to use for kmc , recommended = 71 usage: seroba runSerotyping [options] <databases directory> <read1> <read2> <prefix> Example : seroba createDBs my_database/ 71 Identify serotype of your input data positional arguments: database dir path to database directory read1 forward read file read2 reverse read file prefix unique prefix optional arguments: -h, --help show this help message and exit Other options: --noclean NOCLEAN Do not clean up intermediate files (assemblies, ariba report) --coverage COVERAGE threshold for k-mer coverage of the reference sequence (default = 20) Summaries the output in one tsv file usage: seroba summary <output folder> positional arguments: output folder directory where the output directories from seroba runSerotyping are stored </code> ====== 四、流程执行 ====== <code> 分析脚本: cd /TJPROJ7/META_ASS/16s/yaoyuanyuan/X101SC24071531-Z01-gxh-seroba/X101SC24071531-Z01-F020/seroba-20241223/data/X101SC24071531-Z01-J025_20241211102138/00.CleanData/F4326 source /TJPROJ1/META_ASS/soft/anaconda3/bin/activate /TJPROJ1/META_ASS/soft/seroba unset PERL5LIB seroba runSerotyping /TJPROJ7/META_ASS/16s/yaoyuanyuan/X101SC24071531-Z01-gxh-seroba/X101SC24071531-Z01-F020/seroba-20241223/data/X101SC24071531-Z01-J025_20241211102138/00.CleanData/F4326/F4326_1.fq.gz /TJPROJ7/META_ASS/16s/yaoyuanyuan/X101SC24071531-Z01-gxh-seroba/X101SC24071531-Z01-F020/seroba-20241223/data/X101SC24071531-Z01-J025_20241211102138/00.CleanData/F4326/F4326_2.fq.gz F4326.out </code> ====== 五、分析结果 ====== 1.分析结果展示 在文件夹 'prefix' 中,您将找到一个 pred.tsv,其中包含您的预测血清型,以及一个名为 detailed_serogroup_info.txt 的文件,其中包含有关您在读数中找到的 SNP、基因和等位基因的信息。使用“seroba summary”后,创建一个名为 summary.tsv 的 tsv 文件,该文件由三列(样本 ID、血清型、注释)组成。与任何参考文献都不匹配的血清型被标记为“untypable”(v0.1.3)。 输出结果如下: Predicted Serotype: 23F Serotype predicted by ariba: 23F assembly from ariba has an identity of: 99.77 with this serotype Serotype Genetic Variant 23F allele wchA 在详细信息中,您可以看到最终预测的血清型,以及根据 ARIBA 在该特定血清组中具有最接近参考的血清型。此外,您还可以查看序列组合件和参考序列之间的序列标识。 2.分析过程中可能出现的问题 Case 1: SeroBA predicts 'untypable'. An 'untypable' prediction can either be a real 'untypable' strain or can be caused by different problems. Possible problems are: bad quality of your input data, submission of a wrong species or to low coverage of your sequenced reads. Please check your data again and run a quality control. Case 2: Low alignment identity in the 'detailed_serogroup_info' file. This can be a hint for a mosaic serotpye. Possible solution: perform a blast search on the whole genome assembly Case 3: The third column in the summary.tsv indicates "contamination". This means that at least one heterozygous SNP was detected in the read data with at least 10% of the mapped reads at the specific position supporting the SNP. Possible solution: please check the quality of your data and have a look for contamination within your reads
保存
预览
取消
编辑摘要
当您选择开始编辑本页,即寓示你同意将你贡献的内容按下列许可协议发布:
CC Attribution-Share Alike 4.0 International
seroba.txt
· 最后更改: 2024/12/31 03:06 由
yaoyuanyuan
页面工具
显示页面
修订记录
反向链接
回到顶部