用户工具

站点工具


个性化条目:分子分型分析

NMF分子分型

NMF介绍: 非负矩阵分解 (Nonnegative Matrix Factorizatio,NMF) 是一种无监督学习技术,已成功应用于多个领域,包括信号处理、人脸识别和文本挖掘。 NMF 在生物信息学中的最新应用已证明其能够从高维数据(如基因表达微阵列)中提取有意义的信息。

使用非负矩阵分解 (NMF),一种基于部分分解的算法,可以将表达数据的维度从数千个基因减少到少数元基因。 结合模型选举机制,适用于任何随机聚类算法,NMF 是识别不同分子模式的有效方法,并为聚类发现提供了强大的方法。

分析脚本:

/TJPROJ6/RNA_SH/script_dir/NMF_parting/NMF_parting.R
flags:
  -h, --help			show this help message and exit
  --filter			file expression gene in rather than 50% sample, and get top 15% have lager standard deviation

optional arguments:
  -x, --opts OPTS			RDS file containing argument values
  -f, --fpkm FPKM			the fpkm file
  -c, --condition CONDITION			the condition file
  -s, --sample SAMPLE			the sample name
  -p, --prefix PREFIX			the prefix of outfile

结果见/TJPROJ6/RNA_SH/script_dir/NMF_parting/NMF_parting_result

示例图如下: 根据cophenetic图中选择上升最明显的点进行分类

个性化条目/分子分型分析.txt · 最后更改: 2023/05/19 04:43 由 zhangxin