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Abstract

Motivation: Beta-diversity quantitatively measures the difference among microbial communities thus enlightening
the association between microbiome composition and environment properties or host phenotypes. The beta-
diversity analysis mainly relies on distances among microbiomes that are calculated by all microbial features.
However, in some cases, only a small fraction of members in a community plays crucial roles. Such a tiny proportion
is insufficient to alter the overall distance, which is always missed by end-to-end comparison. On the other hand,
beta-diversity pattern can also be interfered due to the data sparsity when only focusing on nonabundant microbes.

Results: Here, we develop Flex Meta-Storms (FMS) distance algorithm that implements the “local alignment” of micro-
biomes for the first time. Using a flexible extraction that considers the weighted phylogenetic and functional relations
of microbes, FMS produces a normalized phylogenetic distance among members of interest for microbiome pairs. We
demonstrated the advantage of FMS in detecting the subtle variations of microbiomes among different states using arti-
ficial and real datasets, which were neglected by regular distance metrics. Therefore, FMS effectively discriminates
microbiomes with higher sensitivity and flexibility, thus contributing to in-depth comprehension of microbe–host inter-
actions, as well as promoting the utilization of microbiome data such as disease screening and prediction.

Availability and implementation: FMS is implemented in Cþþ, and the source code is released at https://github.
com/qdu-bioinfo/flex-meta-storms.

1 Introduction

Microbes exist in various ecosystems in the form of microbiome, and
they have a close interaction with their habitats. At present, studies
on microbiome mainly rely on bioinformatical analysis of sequencing
data, which can quickly decode the structures and functions of micro-
biomes, thus explain their roles in human health or environment
(Thompson et al. 2017; Proctor et al. 2019). Beta-diversity is a key
foundation for microbiome researches and applications, for it builds
the connection between complex characteristics of microbial com-
munities and their phenotype information (Knight et al. 2018).

Currently, beta-diversity is measured in a “global alignment”
mode, which calculates distances between microbiomes by all micro-
bial members within the communities. The widely used distance
metrics are roughly in two categories. One is vector or statistical dis-
tance, like Bray–Curtis distance, Jessen–Shannon divergency,
Jaccard distance, etc. Such methods emphasize the overlapped com-
munity members but ignored their relationships, which can lead to
the deviation of beta-diversity patterns (Sun et al. 2022); the other is
phylogeny-based dissimilarities, e.g. UniFrac algorithm (Catherine

and Rob 2005; Hamady et al. 2010; McDonald et al. 2018), Meta-
Storms series algorithm (Su et al. 2012, 2013; Jing et al. 2019),
Phylo-RPCA (Cameron et al. 2022), etc. making the distances more
comprehensive by considering microbes’ evolution (Matteo et al.
2020). Both approaches employ all microbial features, however,
may miss subtle changes among microbiomes under specific cases.
For example, only a small part of microbes is associated with autism
spectrum disorder (Son et al. 2015), which are not sufficient to af-
fect the “whole-community-level” distance, thereby obscuring the
understanding on microbe–disease association.

Meanwhile, microbiome beta-diversity has also been widely
exploited in status identification and classification. Usually, statistic-
al approaches (e.g. LefSe (Nicola et al. 2011)) or regular machine
learning (Goecks et al. 2020) (e.g. random forest, etc.) can find out
the key taxa as bio-markers, based on which we can build models or
indices to infer the phenotype of the host or habitat (Su et al. 2020).
Since the resolution of microbiome profiling has been largely
improved (Ye et al. 2019; Meyer et al. 2022), models or indices are
often built with detailed features like species or ASVs (amplicon se-
quence variant) for high specificity. On the other side, due to
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sequencing errors and algorithm inaccuracy of short reads (Edgar
2017), it is possible that microbiomes only share few markers. Such
data sparsity can also significantly interfere the beta-diversity pat-
terns, as well as lead to erroneous results in status prediction.

2 Results

2.1 Interpretation and algorithm design of microbiome

local alignment
Based on the preliminary concept of microbiome “local alignment”
that we previous proposed (Su 2021), here, we concretize a “local
alignment” distance algorithm named Flex Meta-Storms (FMS), and
implement it as software packages. Using a flexible member extrac-
tion, FMS captures a subset of interest from complex communities
and calculates a normalized phylogenetic distance between sample
pair. Such effects elucidate the beta-diversity with balanced sensitiv-
ity and accuracy than existing distance metrics, especially for pheno-
types like human diseases.

Here, we illustrate the “local alignment” FMS algorithm by an ex-
ample. As shown in Fig. 1A, Groups A and B are microbiomes in two
different statuses. Most members between the two groups are similarly
distributed, while variations of their beta-diversity are only related to a
small fraction of species with low abundance (i.e. species B_sp8, C_sp1,
C_sp3, and C_sp5, highlighted in red in Fig. 1A; denoted as exact
markers). In this case, the distinction of beta-diversity between Groups
A and B cannot be adequately reflected when using the “global
alignment” methods, consequently interfering diversity pattern recogni-
tion between statuses. On the other side, it is possible that microbiomes
may share few exact markers due to data sparsity or sequencing/profil-
ing errors. For example, Group B does not have species B_sp8 and
C_s1, but contains their close relatives of B_sp9 and C_sp2 (Fig. 1A),
thus concentrating only on exact markers but ignoring linkages among
microbes can also lead to false positive or false negative.

The FMS algorithm focuses on the target members that consist
of two parts: (i) exact markers; and (ii) approximate markers that
have very close phylogeny or metabolic functions to the exact
markers. Firstly, exact markers (highlighted in red in Fig. 1A) are
detected by bio-marker selection (e.g. statistical tests or machine
learning) or assigned manually (e.g. microbes of interest). FMS then
flexibly locates approximate markers (e.g. species B_sp9, C_sp2,
and C_sp4 in Fig. 1A, highlighted in yellow) by phylogeny and func-
tions, and extracts all targeted members from the communities
(Fig. 1B). Notably, abundances of approximate markers are not

directly employed but are weighted by distances to their nearest
exact markers. Finally, FMS calculates the normalized phylogeny-
based Meta-Storms distances between sample pairs on target mem-
bers thus reveals the association between microbiome compositions
and status. The detailed procedure is also described in Section 2 and
Supplementary Fig. S1.

2.2 Assessment of Flex Meta-Storms on artificial

datasets
The feasibility of FMS was verified by analysis of an artificial data-
set (Table 1). This dataset simulated 100 samples of Groups A and B
according to the microbial patterns as Fig. 1. We calculated their
pairwise distances using the Meta-Storms algorithm by all members
(global alignment) and only bio-markers, and the FMS algorithm
(local alignment), respectively. As shown in Fig. 2A, the principal
coordinate analysis (PCoA) intuitively showed the high sensitivity of
FMS in beta-diversity analysis, while others failed in differentiating
the two groups. Then, we furtherly predicted the group information
by K-nearest neighbors (KNN) (Su et al. 2020) and evaluated the
performance of three metrics by leave-one-out tests. The operating
characteristic curve (ROC) also exhibited the consistent results as
PCoA (Fig. 2B): the FMS obtained the top AUC (area under the
ROC) of 0.95 but that of global alignment and biomarkers was only
below 0.6.

2.3 Awareness of the hidden beta-diversity under partial

fraction between healthy states
Numerous studies have shown that autism spectrum disorders
(ASD) were associated with only a small subset of gut microbes such
as Dialister, Lactobacillus, and Parabacteroides (Francesco et al.
2017; Lu et al. 2021; Jiayin et al. 2022). Here, we employed Real
dataset I from an ASD study (Table 1) for beta-diversity analysis
and compared the performance of global alignment metrics (includ-
ing Bray–Curtis, Meta-Storms, UniFrac, and Phylo-RPCA) and local
alignment of FMS algorithm by PCoA pattern detection, permuta-
tional multivariate analysis of variance (PERMANOVA; permuta-
tion n¼999), and KNN-based disease classification. To avoid the
bias introduced from advanced bio-marker selection strategies, here,
we only used Wilcoxon rank-sum test for exact marker selection in
FMS (features with P-value < 0.01 were selected).

As shown in Fig. 3A, we observed that all the global distance
metrics were not able to distinguish ASD samples from healthy con-
trols in PCoA patterns, and their P-values of PERMANOVA tests
were not significant (Table 2A; cutoff was set as 0.01;
Supplementary Fig. S2), thus produced weak AUC (<0.6; Fig. 3B) in
ASD detection. We noticed that the Meta-Storms distance with only
exact markers was sensitive to the ASD (P-value<0.01;
AUC¼0.66), but the beta-diversity pattern in PCoA was distorted
(“Exact markers” panels in Fig. 3A and B) due to the lack of shared
markers among samples (only seven markers that took a proportion
of 1.75%). On the other side, with additional 92 approximate
markers, the hidden linkage between ASD and the gut microbes was
uncovered and reflected by FMS (P-value<0.01; Fig. 3A and
Supplementary Fig. S2; Beta-diversity was verified by ANOSIM test
in Supplementary Table S1A, and homogeneity was assessed by
multivariate dispersion test in Supplementary Table S2A), resulting
a reliable disease classification (Fig. 3B; AUC¼0.77). In addition,

Figure 1. An example of the Flex Meta-Storms algorithm. (A) Phylogenetic tree and

species distribution of two microbiome sets. (B) Distribution of target members.

Table 1. Description of datasets.

Dataset No. of samples Source Type Description

Artificial dataset 100 Simulation OTU table Artificial samples of Fig. 1

Real dataset I 88 NCBI

PRJNA282013 (Son et al. 2015)

16S amplicon ASD and healthy control

Real dataset II 104 NCBI

PRJNA290926 (Baxter et al. 2016)

16S amplicon CRC and healthy control
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the ASD samples and healthy controls exhibited homogeneity of dis-
persion on all distances (P-value>0.01; Supplementary Table S2A).

2.4 Highlighting the overall beta-diversity associated

with phenotypes
Different from only a subtle fraction of microbes was changed with
ASD, more diseases were reported to affect the microbiome at the
whole-community level such as colorectal cancer (CRC) (Wirbel
et al. 2019). Thus, we repeated the analytical procedures of ASD
microbiomes by real dataset II from a CRC study (Table 1), which
verified the applicability of FMS algorithm on the dynamics of the
majority members among communities.

As shown in Table 2B, most approaches (except Phylo-RPCA) suc-
cessfully caught the distinct gut microbial pattern between CRC patients
and healthy controls (Fig. 4A; PERMANOVA test P-value<0.01;
Supplementary Fig. S3), enabling the disease classification using KNN
(Fig. 4B; AUC>0.7). Here, the PCoA pattern parsed by only bio-
markers was largely improved than that of ASD since exact markers
were more abundant in CRC samples (average proportion: 10.11% of
CRC versus 1.75% of ASD; “Exact marker” panel in Fig. 4A). Among
them, the FMS algorithm achieved the highest R2 of PERMANOVA
test (R2 ¼ 0.34, P-value<0.01; beta-diversity was verified by
ANOSIM test in Supplementary Table S1B, and homogeneity was
assessed by multivariate dispersion test in Supplementary Table S2B)
and AUC of disease classification (AUC¼0.86). This superiority was
derived from it rationally amplified the variation between states by the
exact and approximate markers flexibly extracted from the whole
communities.

3 Discussion

As a fundamental characteristic of microbiome, beta-diversity has
been used to quantify the difference among communities, thus links
the microbial compositions with meta-data. Different from existing
approaches that are mainly based on the whole-community-level
distances, the Flex Meta-Storms algorithm in local-alignment type
focuses on partial members that are flexibly selected, which achieves
an optimal sensitivity and specificity in describing the diversity
pattern for specific phenotypes. In other words, FMS enhances the

discrimination of microbiomes rather than a typical overall beta-
diversity distance metric. Coupled with further analytical steps like
PCoA, KNN, and PERMANOVA tests, FMS could better leverage
its ability to decipher the hidden beta-diversity of microbiomes.
Since the local alignment also relies on the “key” exact markers that
deduce the target members, the performance of FMS can be fur-
therly enhanced by state-of-the-art biomarker selection (Nearing
et al. 2022), e.g. NetMoss (Xiao et al. 2022), ALDEx2 (Fernandes
et al. 2014), ANCOM-II (Mandal et al. 2015), etc.

In the current implementation of FMS, relations among microbes
were pre-computed from a reference database by their phylogeny of
amplified genes (e.g. 16S rRNA) and inferred metabolic functions of
corresponding whole genomes, which ensures the comprehensiveness as
well as the efficiency for flexible feature extraction. Such preprocessed
reference can also be easily reproduced using NCBI RefSeq (O’Leary
et al. 2016), SILVA (Christian et al. 2013), RDP (Cole et al. 2014), or
other widely used databases for versatile sequence and profile types (e.g.
species, OTU, ASV, etc.). This strategy keeps the runtime complexity of
Flex Meta-Storms on the same level as other phylogeny-based distance
metrics (e.g. Fast UniFrac or Meta-Storms). Meanwhile, it also requires
the compositions of all microbiomes are picked from definite references,
yet not compatible to de novo sequence processing that lacks a prior in-
formation on community members. On the other side, the marker-
based distances may also exhibit limitation in dealing with outliers,
where RPCA is advantageous (Cameron et al. 2022).

4 Materials and methods

4.1 Precomputing of quantitative relations among

microbes
To quickly and accurately locate the approximate markers of given
exact markers in a microbiome, we precomputed the quantitative rela-
tions among microbes in the Greengenes database (v13-8) (DeSantis
et al. 2006). Basically, for each OTU (operational taxonomy unit), we
trace its approximate neighbors (AN) and the corresponding distances
using full-length 16S rRNA gene sequence similarity, taxonomy anno-
tation, and function profile hierarchy. From taxonomy and phylogeny
aspects, we used VSEARCH (Torbjørn et al. 2016) to perform pair-
wise sequence alignment (vsearch—usearch_global) and parse out the

Figure 2. Beta-diversity patterns of the artificial dataset using different distances. (A) PCoA analysis results. (B) ROC of KNN-based status prediction. “Exact markers” denotes

the Meta-Storms distance using only exact markers.
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Figure 3. Beta-diversity patterns of real dataset I (ASD) using different distances. (A) PCoA analysis results. (B) ROC of KNN-based status prediction. “Exact markers” denotes

the Meta-Storms distance using only exact markers.

Table 2. Results of PERMANOVA test between different status.a

Distance metrices Bray–Curtis Meta-Storms UniFrac Phylo-RPCA Exact markers FMS

(A) Real dataset I

R2 0.01176 0.02106 0.02444 0.00943 0.07132 0.14844

P-value 0.375 0.093 0.034 0.457 0.001 0.001

(B) Real dataset II

R2 0.0213 0.04758 0.03066 0.01194 0.25774 0.33849

P-value 0.001 0.003 0.012 0.298 0.001 0.001

a“Exact markers” denotes the Meta-Storms distance using only exact markers.
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top 0.1% sequence similarity threshold ts (0.92). Then for OTU i, we
can select its phylogeny neighbors (PN) with both high sequence simi-
larity and identical taxonomy annotation by Equation (1):

PN ið Þ ¼ 8j 2 similaritys i; jð Þ � ts

� �
&& taxon ið Þ ¼ taxon jð Þ

� �n o
:

(1)

Similarly, using the KEGG (Minoru et al. 2016) function profiles
predicted from PICRUSt 2 (Douglas et al. 2020), we employed

Hierarchical Meta-Storms (HMS) algorithm (Zhang et al. 2021) to
calculate the functional distance threshold df (0.11) and screen func-
tional neighbors (FN) as Equation (2):

FN ið Þ ¼ 8j 2 HMS i; jð Þ � df

� �
: (2)

Finally, the candidate approximate neighbors of OTU i can be
taken out by the intersection set of PN and FN as Equation (3),
which ensured they shared the close taxonomic, phylogenetic, and
functional features.

Figure 4. Beta-diversity patterns of real dataset II (CRC) using different distances. (A) PCoA analysis results. (B) ROC of KNN-based status prediction. “Exact markers”

denotes the Meta-Storms distance using only exact markers.
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AN ið Þ ¼ PN ið Þ \ FN ið Þ: (3)

4.2 Bio-marker selection and flexible member extraction
To highlight the advantage from FMS algorithm rather than super-
ior bio-marker selection strategies, we only used the Wilcoxon rank
sum test to choose the uneven distributed microbes between differ-
ent groups (P-value < 0.01) as exact markers, and then deduce the
approximate markers from their neighbors. Alternatively, exact
markers can also be manually assigned as any microbes of interest
(Supplementary Fig. S1A). Considering the approximate markers
also dilute the original exact markers, here, we developed a flexible
extraction method for balance. In a microbiome, a single approxi-
mate marker j (with relative abundance Abdj) can be indexed from
multiple exact markers. Then its contribution to the local alignment
Abdj’ was weight by the sequence similarity to the nearest exact
marker as Equation (4). Hence, the exact and approximate markers
are merged as the target member set T for local alignment
(Supplementary Fig. S1B).

Abd0j ¼ max
j2PNðiÞ

similaritysði; jÞ
� �

� Abdj: (4)

4.3 Normalized phylogenetic distance of microbial

fractions
Based on the target members from the microbiomes, the FMS algo-
rithm calculates the phylogeny distance (Su et al. 2012) of sample
pairs with normalization (Supplementary Fig. S1C). The target
members of a sample pair are first mapped to leaf nodes of the com-
mon binary phylogenetic tree, and then the distance on each branch
is calculated recursively from the leaf nodes to the root. Suppose
that for a target member sp (a tip node in the phylogenetic tree), its
relative abundances in two samples are sp. S1 and sp. S2, respective-
ly. We define Con(sp) as the consistency score of a single species in
Equation (5):

Con spð Þ ¼ min sp:S1; sp:S2ð Þ; sp 2 T: (5)

And for an internal node sp’ of the phylogeny tree with two chil-
dren of sp_i and sp_j, its consistency score can be extended from
Equations (5) to (6):

Con sp
0� �

¼ min jsp i:S1� sp i:S2j � ð1� d1Þ; jsp j:S1� sp j:S2j � ð1� d2Þ
� �

:

(6)

Here, di represents the distance of species sp_i to its ancestor
node. We recursively process all internal nodes in the phylogenetic
tree in this way and obtain the overall consistency score of the target
members at the root of the tree. Since the target member set T is
only a fragment of the entire community, the local alignment dis-
tance is then normalized by the sum of the relative abundance of T
as Equation (7).

Distlocal S1; S2ð Þ ¼ 2� ð1� ConðrootÞÞP
i2T sp i:S1þ

P
i2T sp i:S2

: (7)

4.4 Microbiome datasets, sequence preprocessing, and

statistical analysis
Microbiome datasets used in this work and their information are
listed in Table 1. The original sequences were preprocessed by
Parallel-Meta Suite (Chen et al. 2022), including chimera removal,
pair-end merging, and ASV denoising. OTUs were then picked
against Greengenes database (v13-8) with sequence similarity of
0.99, and relative abundance of microbes was normalized and cor-
rected by 16S rRNA gene copy numbers. The phylogenetic tree of
OTUs was pre-built by Greengenes using FastTree (Price et al.
2009). PERMANOVA test, ANOSIM test, and multivariate disper-
sion test were performed using the “vegan” package (Dixon 2003)

of CRAN-R (R Core Team 2013). Number of permutations was set
as 999, and threshold of significance for P-value was set as 0.01.

4.5 Code implementation and parallel computing
Flex Meta-Storms algorithm is implemented in Cþþ with OpenMP-
based parallel computing. It contains a preprocessed reference based
on Greengenes database (v13-8) (DeSantis et al. 2006) for fast and
flexible target member extraction. The software is compatible with
operating systems of Linux, Mac, and Windows Subsystem Linux.
Taking microbiome samples’ features table [e.g. profiling results
from Parallel-Meta Suite (Chen et al. 2022) or QIIME2 (Bolyen
et al. 2019)] and exact markers as input, FMS calculates the “local
alignment” distances as output. The input exact markers could be
provided in two ways (i) manually assigned by users with markers of
interest or (ii) automatically selected by FMS package using rank-
sum test [Wilcoxon test for two groups, Kruskal test for three or
more groups, implemented by CRAN-R (R Core Team 2013)].

Supplementary data

Supplementary data is available at Bioinformatics online.
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