客户需求根据meta的物种的NMDS结果和ARO的NMDS结果做Procrustes分析,我们之前的个性化流程中有针对meta的Procrustes分析,但是是根据PCoA结果进行分析的。
现在整理出一套R代码,可以使用任意两个NMDS结果(物种,ARO,MGE等)进行Procrustes分析,可得到普适分析图。
使用任意两个NMDS结果(物种,ARO,MGE等)进行Procrustes分析。
1. NR物种丰度文件准备:
meta分析流程中Unigenes.absolute.g.xls
2. ARO丰度文件准备:
meta分析流程中stat.ARO.absolute.xls
1. R代码:
setwd("./") # Procrustes Anaylsis ---------- # 评估物种群落结构与环境因子间是否具存在显著的相关性(两个数据集) # 加载R包 library(vegan) # 加载数据 #data(varespec) #head(varespec) #data(varechem) #head(varechem) # 需要先对数据计算其样本间的距离 # 一般物种群落使用bray-curtis距离,而环境因子使用欧式距离 #spe.dist <- vegdist(varespec) # 默认Bray-Curtis #env.dist <- vegdist(scale(varechem), "euclid") #?procrustes # 在进行普鲁克分析前,需要先对两个数据进行降为分析,这里使用的是NMDS # 也可以使用PCA或者PCoA,然后进行普鲁克分析,计算显著性 #mds.s <- monoMDS(spe.dist) #mds.e <- monoMDS(env.dist) #mds.s ##流程NMDS方法-cjw library(permute) library(lattice) library(ggplot2) otu1=read.table("Unigenes.absolute.g.xls",header=T,row.names=1,sep="\t",comment.char="") otu1t=t(otu1) #dist=vegdist(otu,method="bray") nmds1=metaMDS(otu1t) capture.output(nmds1,file = "Stress1.txt" ) nmds_scores1=scores(nmds1, choices = c(1,2)) write.table(nmds_scores1,file="NMDS_scores1.txt") otu2=read.table("stat.ARO.absolute.xls",header=T,row.names=1,sep="\t",comment.char="") otu2t=t(otu2) #dist=vegdist(otu,method="bray") nmds2=metaMDS(otu2t) capture.output(nmds2,file = "Stress2.txt" ) nmds_scores2=scores(nmds2, choices = c(1,2)) write.table(nmds_scores2,file="NMDS_scores2.txt") # 以对称模式为例进行普氏分析(symmetric = TRUE) #pro.s.e <- procrustes(mds.s,mds.e, symmetric = TRUE) #summary(pro.s.e) pro.s.e <- procrustes(nmds1,nmds2, symmetric = TRUE) summary(pro.s.e) # 一致性 plot(pro.s.e, kind = 2) residuals(pro.s.e) # 普氏分析中M2统计量的显著性检验 set.seed(1) pro.s.e_t <- protest(nmds1,nmds2, permutations = 999) pro.s.e_t #偏差平方和(M2统计量) M2<-round(pro.s.e_t$ss,3) # 对应p值结果 PVAL<-pro.s.e_t$signif # 获得x和y轴的坐标及旋转过的坐标 Pro_Y <- cbind(data.frame(pro.s.e$Yrot), data.frame(pro.s.e$X)) Pro_X <- data.frame(pro.s.e$rotation) # 绘图 p1<-ggplot(data=Pro_Y) + geom_segment(aes(x = X1 , y = X2, xend =NMDS1,yend =NMDS2),color = "grey", size = 1)+ #geom_segment(aes(x = X1, y = X2, # xend = (X1 + NMDS1)/2, yend = (X2 + NMDS2)/2), # geom_segment 绘制两点间的直线 #arrow = arrow(length = unit(0, 'cm')), # color = "#9BBB59", size = 1) + #geom_segment(aes(x = (X1 + NMDS1)/2, y = (X2 + NMDS2)/2, # xend = NMDS1, yend = NMDS2), #arrow = arrow(length = unit(0.2, 'cm')), # color = "#957DB1", size = 1) + geom_point(aes(X1, X2), color = "blue", size = 3, shape = 16) + geom_point(aes(NMDS1, NMDS2), color = "red", size = 3, shape = 16) + theme(panel.grid = element_blank(), # 绘制背景 panel.background = element_rect(color = 'black', fill = 'transparent'), legend.key = element_rect(fill = 'transparent'), #axis.ticks.length = unit(0.4,"lines"), axis.ticks = element_line(color='black'), axis.line = element_line(colour = "black"), axis.title.x=element_text(colour='black', size=24), axis.title.y=element_text(colour='black', size=24), axis.text=element_text(colour='black',size=12)) + labs(x = 'Dimension 1', y = 'Dimension 2', color = '') + #labs(title="Correlation between community and environment") + #geom_vline(xintercept = 0, color = 'gray', linetype = 2, size = 0.3) + #geom_hline(yintercept = 0, color = 'gray', linetype = 2, size = 0.3) + #geom_abline(intercept = 0, slope = Pro_X[1,2]/Pro_X[1,1], size = 0.3) + #geom_abline(intercept = 0, slope = Pro_X[2,2]/Pro_X[2,1], size = 0.3) + #annotate('text', label = paste("Procrustes analysis:M2 = ",M2,",p-value = ",PVAL,sep=""), # x = -0.3, y = 0.3, size = 4,hjust = 0) + theme(plot.title = element_text(size=14,colour = "black", hjust = 0.5,face = "bold")) p1 ggsave("PACo.pdf",height=12,width=15) dev.off()
2. 运行方式:
/PUBLIC/software/public/System/R-2.15.3/bin/R -f procrustes.R
完整代码路径:
/TJPROJ5/META_ASS/16s/chenjiawei/script/META/gxh/Procrustes/procrustes.R